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Abstract. The problem of deriving explicit coordinates for quasicrystal approximants is 
solved in all the cases where the quasicrystal has an inflation symmetry. I n  the higher- 
dimensional space R ” ,  from which the quasiperiodic pattern is obtained by the cut method, 
the inflation symmetry is represented by a hyperbolic modular matrix (with integer entries) 
leaving the ’physical’ space invariant. But this matrix also generates, by iteration, a sequence 
of (rational) approximant spaces which converges to the irrational space. A simple 
algorithm is described, providing the approximant periodic lattice and the set of vertices 
within a unit cell. 

1. Introduction 

Since the experimental discovery of quasicrystals in 1985 (Shechtman er al 1985) there 
has been a growing interest in the study of aperiodic tilings. Indeed the main new 
features of quasicrystals ( a  point-like diffraction pattern showing an  icosahedral sym- 
metry) can be nicely reproduced by the non-periodic space tilings proposed several 
years before by Penrose (1979). This new kind of order in solids allows previously 
‘forbidden’ symmetries (icosahedral but also octagonal or dodecagonal symmetries) 
and  generalises some features characteristic of incommensurate structures. There are 
two main methods to generate p-dimensional Penrose patterns: the inflation or decima- 
tion techniques (Penrose 1979, Gardner 1977), and the various algorithms based on  
higher dimensions (multigrid dualisation (de Bruijn 1981), ‘cut and project’ (CP) (Elser 
1985, Kalugin et a1 1985, Duneau and Katz 1985) or plain sections (Bak 1986, Oguey 
et a1 1988)). Many things are known about the geometrical properties of these 
fascinating structures: local configurations, inflation (self-similar) properties, matching 
rules,. . . . However very little is known (except in one dimension) about the expected 
physical properties of the solid which adopts such a geometry for its atomic order. 
This may be due  to the fact that the vertex positions are not known explicitly but result 
from an algorithmic procedure: a selection of nodes in an  n-dimensional lattice for 
the C P  method, or  a pecise indexing of plane intersections for the grid method. 

The coordinates can be derived, however, in the case of the so-called ‘approximants’; 
these are periodic structures with larger and  larger unit cells where the symmetry 
locally approaches the quasiperiodic one. When dealing with tilings, the settings can 
be arranged such that the tiles are the same in the approximant and in the quasiperiodic 
tilings; the difference relies only in the long-range order of the tiles-periodic in the 
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former case, quasiperiodic in the latter. In many respects these approximants are the 
n-dimensional analogues of the rational approximants to irrational numbers. The 
coordinates are obtained very easily for codimension 1 (mapping from n to n - 1 
dimensions) quasicrystal approximants (Mosseri 1988). The generalisation to any 
codimension was investigated in a subsequent paper (Mosseri el a1 1988), showing 
that the calculation is still possible at the price of a (slightly) more complex work. 

The purpose of the present paper is to show that this method can be greatly 
simplified for the class of self-similar tilings. Indeed in the C P  method the inflation 
symmetry is closely related to a hyperbolic modular transformation M of the higher 
dimensional space R". The unstable subspace E (associated with the eigenvalue of 
M larger than one) is identified with the 'physical' space where the quasiperiodic 
structure X is built. Using this modular transformation M, we can construct a sequence 
of approximant structures xk depending on lattice subspaces Ek which converge to E 
when k goes to infinity. The approximant structures are periodic and we give a simple 
algorithm to get the translation lattice and the unit cell sites or vertices at any order. 

We then study in detail the case of the octagonal tiling approximants. The vertex 
coordinates are given explicitly for all k. Finally the Fourier transform is calculated. 
Its relation with the spectrum of the limit quasiperiodic pattern is discussed. 

2. Periodic approximants of quasiperiodic tilings 

We briefly recall the cut and project method (Elser 1985, Kalugin et a1 1985, Duneau 
and Katz 1985) and adapt it to describe the neighbouring periodic patterns. 

Let R" be the n-dimensional real space endowed with its canonical basis 
{ E , ,  . . . , E,,}. 2" = [ E , ,  . . . , E,,] denotes the standard n-dimensional lattice spanned by 
E l ,  . . . , En. 

The 'physical' space E is a p-dimensional vector space embedded as a linear 
subspace in R " ;  let T and d =  Id - T be two complementary projectors such thatt  

E = r ( R " )  

E ' =  T ' ( R " )  

R " = E @ E ' .  

If y is a smooth bounded subset$ of R", consider the following 'strip' or cylinder: 

S = E + y = { x + x ' l x ~ E  and x ' E ~ } .  (2) 
Define the 'window' W as the projection ~ ' ( y )  of y onto E ' ;  W coincides with 

the intersection of the strip S with E'.  Then the definition ( 2 )  of S is equivalent to 

S =  E +  W = { x + x ' I x ~  E and X ' E  W } .  ( 2 ' )  
The corresponding structure X in E is the projection of the set of lattice points 
belonging to S :  

(3)  X = r ( S n  2") = T [ ( E  + y )  n Z " ] .  

t Usually these projectors are orthogonal but this is not required by quasiperiodicity. 
$ In most applications, y is the standard open unit hypercube of R " :  

y = { ( x , , .  . . ,x,,)lO<x, < 1 for i =  1,. . . , n } .  
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There are various ways of devising periodic structures close to the above-defined 
structure X .  We consider the one which consists in selecting lattice points in a different 
strip 

So= E,+ y (4) 

where Eo is a p-dimensional lattice plane (i.e. Eo is spanned by p independent vectors 
of the lattice Z " )  close to E (in a sense which we need not specify for the moment) 
and y is the same as in (2) .  

Let Lo = E o n  2" denote the p-dimensional intersection lattice of Eo. Then a 
classical theorem (see for instance Cohn (1980)) states that there exists a complementary 
space EA of dimension n -p, with a ( n  -p)-dimensional intersection lattice LA = EAn 
Z", such that 

R" = Eo@ Eh ( 5 )  

2" = Lo@ Lh. ( 6 )  
Consequently a basis of 2" can be formed by the union of a basis of Lo and a 

basis of LA (there exists a matrix of GL(n, Z )  which maps the canonical basis onto 
this new basis). 

The periodic approximant structure associated with Eo is thus given by the pro- 
jection: 

X ,  = T ( So n 2" ) = T [  ( Eo + y ) n Z " 1. ( 7 )  
Define the new window WO as the intersection WO= S o n  El, of the strip So with 

EA. Then 

so= E,+ WO. (7')  
The set of lattice points (Eo+ WO) n 2" is obviously invariant with respect to the 

translations of Lo. In view of the decompositions (5) and (6) it is easily checked that 

( E o +  W o ) n Z " = ( E o n Z " ) + ( W o n Z " )  

= L o +  W o n  LA. 

Call Bo= W o n  Lb= Son  LA the (finite) intersection of the strip So with the lattice 
LA; then we have 

(Eo+ W o ) n Z " = L o + B o .  (8) 
In other words, the set of lattice nodes selected by the strip So is the orbit of the 

finite pattern Bo under the lattice Lo. Finally, to get the pattern in the physical space, 
project everything down: 

(9) 
This approximant is characterised by the translation lattice T( Lo) and the structural 

x, = ..(Lo + Bo) = 5T( Lo) + T (  Bo). 

basis T ( B o ) .  

3. Algebraic inflation in the cut and project framework 

We give a formal definition of the inflation map. This specifies the extra structure 
used in our construction of sequences of approximants. It implies that the related 
quasiperiodic pattern is self-similar being, somehow, a 'fixed point' of the inflation map. 
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De$nition. An algebraic inflation is given by a matrix M with integer entries and  
determinant * 1 t such that 

M = A T +  A ' H '  (10) 

where H and H '  = Id - H are two complementary projectors both different from 0 and 
Id and where A and A '  are two real numbers. 

The physical and complementary space E and E' are defined as the ranges of those 
projectors by (1).  In particular, A and A '  are algebraic numbers since they are roots 
of the polynomial equation det( M - xld  1 = 0. They satisfy A P A  ' r  = i 1 where p = 
dim( E 1 and  p' = n - p = dim( E ' ) .  Moreover, the following relations hold for any integer 
k: 

T M ~  = A ~ H  (11) 

r ' M k  = A i k r ' ,  (11') 

Example. In the case of the octagonal tiling ( n  = 4), M is the following matrix: 

1 0 1 - 1  

M = [ Y  -1 : 1 0 : 
with eigenvalues A = 1 +a and A ' =  1 --a; the corresponding eigenspaces E and E '  
are two-dimensional planes obtained as the ranges of the following irrational projectors 
(set x = I/&): 

4. Approximant structures associated with an inflation 

Assume M is an  algebraic inflation, as defined above, with eigenspaces and  eigenvalues 
( E ,  A )  and ( E ' ,  A ' ) ;  assume that IA I > 1. The hyperbolic nature of M allows us to build 
sequences of rational p-dimensional planes (p-planes for short) converging to the limit 
E, as we now describe. 

Let Eo be a rational p-plane of R" together with its intersection lattice Lo = Z" n Eo,  
complementary space E ;  and lattice LA (as in 8 2). This provides the 'initial conditions' 
in the procedure (for instance Eo can be a coordinate plane of R " ) .  

of rational p-planes and a sequence { L k }  of p-dimensional 
lattices is generated by iteration of the map M (see figure 1): 

Then, a sequence { E k } k  

Ek = M k ( E o )  

L k = Z " n  E A .  

Since M is in GL( n, Z ) ,  the intersection lattice Lk of Ek is simply given by Lk = M k (  Lo) .  

+ M belongs to GL(n,  Z ) ,  the  group of modular matrices (integer entries a n d  Idet1 = 1) .  
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- Eo 

0 0 0 0 0 0 0  ' + o o o o o o o  

Figure 1. The canonical strip of the approximant E, is mapped by M-' onto the strip 
parallel to E,, with the window W, = ~ i : ~ [ M - ' ( y ) ] .  

By the cut and project method, a periodic tiling of E can be associated with each 

Consider the strip S,  = y + Ek = {x + ylx E y and y E Ek} and define 
p-plane Ek in the way described in § 2 (replacing the index 0 by k ) .  

zk = Sk n z" (16) 

x, = r(E,). (17 )  

Thus Z k  is the set of lattice points lying inside s k  ; this set is clearly invariant under 
translations of the lattice Lk. By projection, X h  is invariant with respect to the lattice 
r ( L k ) .  Therefore xk is the set of vertices of a (periodic) tiling of E. A structural basis 
can be obtained as the projection of a unit cell of the L,-periodic set S A .  

In order to easily compare the different structures X h  we will cast the settings in 
a slightly different manner. 

First, it is natural to compare directly the subsets Z, ; however, these subsets have 
different mean orientations (the p-planes E L ) ;  so it is more convenient to consider the 
subsets Z, = M - , ( Z , )  which have the same average orientation Eo. More precisely, 
by (17) ,  we have X k = 7 r ( E k ) = 7 r M k M - k ( E h ) .  Thus, if we set Z h = h K h ( E h )  the 
structure is simply given by 

x, = TMk(  2, ) = h "T( zh ) 

where we have applied (11). 
Next, since 2" is invariant by M :  

zk = W k [  ( y + E k )  n Z " ]  

zk = [ M - ~ ( ~ ) + E ~ ] ~ z " .  

= h'-A(  y +  Ek) n Z" = [ M - ' ( y ) +  M - ' ( € h ) ]  z" 

Define Yk as yk = ~ - ' ( y ) + :  

z, = ( y ,  + E o )  n 2". (18)  

In other words, Z, is the subset of nodes of 2" which belong to the strip yh + Eo.  
This strip is now oriented along Eo for all k. 

t When y is the unit n-cube the polyhedron yi = M - ' ( y )  is a fundamental cell of the lattice 2" (because 
M is modular). 
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We may further introduce the window wk = ( y k + E o ) n E A  which is simply the 
profile of the strip in the ( n  -p)-dimensional space EA. According to the direct sum 
(6), the subset z k  is equal to Lo@Bk,  where the pattern Bk is the finite subset of the 
complementary lattice LA selected by the window of W,. 

wk = ( Y k  -l Eo) n E b 

To summarise, the successive steps of the construction are the following: 

window of the rational strip in Eh.  (19) 

structural basis of the periodic set 

decomposition of the lattice points 

in the strip. (20) 

in the strip. (21) 

X , = A k ~ ( Z , ) = A k [ ~ ( L O ) +  T ( B ~ ) ]  periodic structure in E. (22) 

The last formula clearly shows that the structure X ,  is periodic. As k increases, 
the Bravais lattice simply expands by a homothetical factor A,. On the other hand, 
the structural basis Bk is provided by a finite subset of one and the same lattice (I!,;). 
The only non-trivially varying object is the window W,.  I f  T A  denotes the linear 
projector of R" onto Eh with kernel Eo, the window may be built by projecting the 

When y is the n-dimensional unit cube-the induced quasiperiodic tilings were 
called 'canonical' in (Oguey et a1 1988); the Penrose, octagonal and icosahedral tilings 
are of this type-the successive wk satisfy simple recursion relations owing to their 
being zonohedra (see the appendix). 

polyhedron Y k :  wk = TA( 7,). 

5. The Fibonacci chain revisited 

We apply the above described method to a simple case. The Fibonacci chain is a well 
known tiling of the line by two intervals in the golden ratio. Thus following this 
example will give familiarity to the different geometrical objects which play an inter- 
mediate role in the method. We shall next treat, in § 6, the octagonal tiling approximants 
and give explicit coordinates for their vertices. 

Let T = (1 + 8 ) / 2  be the golden ratio and consider the modular matrix M = ( f  A )  
with two eigenvalues T and -T-'. Let T and T' be the projectors onto the associated 
eigendirections: 

(23)  

It is easily checked that 

M =  m + ( - - . r - ' ) ? T ' .  (24) 
In terms of the Fibonacci sequence F = { Fk} = { 1,1,2,3,5,8, . . .}, one gets 

( 2 5 )  

Similarly 
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We take, for y, the unit square of 2‘ defined by its four vertices 

In the plane, we set Eo along the x direction and  EA along the y direction. This means 
that Lo and LA are the lattices generated by (1,O) and  (0, 1)  respectively. 

Now Yk = M - k ( y )  is a parallelogram defined by its four vertices 

It is a fundamental cell of Z 2  since M is modular. The window Wk is the projection 
of yk into EA. Then Bk = Wk n is simply the set of points 

Bk = { p x ( -  x (0 ,  1)1 p = 0, . . . , F k + 2  - l}. (29) 

Therefore the set of vertices of the approximant structure is 

Xk = rk  [ n( Bk ) + r( t o ) ] .  

The vertices are explicitly given by 

Therefore they have the following coordinates along E :  

The vertices inside the first unit cell approximant are 

Note that the index ‘p ’  is not the natural order along the chain. The vertices are 
ordered according to their distance to the space E ;  this is always the case in the 
treatment of codimension 1 approximants (Mosseri 1988). 

6. Approximants of the octagonal tiling 

The octagonal tiling and  its approximants has been invoked to account for the sym- 
metries observed in phases of alloys such as CrNiSi and  AlMnSi (Wang and Kuo 
1988). On the theoretical side see for example (Benker 1982, Gratias 1988, Socolar 
1989). 

The modular matrix M and the related projectors are given in (12) and (13). Let 
B = { O k }  = {1,2 ,5 ,12 ,29 , .  . .} be the ‘Octonacci’ sequence defined by 

ck+l =26k + Ck-1 c,  = 1 c* = 2. (32) 
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The successive ratios O k + l / O k  tend to A = 1 +a. Then it is easy to see that the 
matrix M satisfies the relation 

M - ,  = ( - l ) k + ' ( O k M - 6 ~ + , 1 )  

c, + o,-, 0 - 0, 

- -Ok + cL-1 O,+O,-, - c k  -;k 1. (33)  [ :ck 
- CA 0 c, + ck-I 

M - ,  = 

0, 

In  the following we shall use CY, p, 6 such that 

CY = ( - l ) , + ' q  6 = (-l)kOA+l p = a + S = ( - l ) k ( c . k + O k - l )  

We take as y the 4~ unit cube whose 16 vertices are given in table 1. We choose as 
Eo the 2-plane spanned by the first two vectors { E ~ ,  E ~ }  of the standard orthonormal 
basis, and  as Eh the 2-plane spanned by { E ~ ,  E ~ } .  

The window W, is obtained by mapping yk = M - , ( y )  onto Eh which amounts to 
keeping only the last two coordinates of the yk vertices. The vertices of W, are given 
in table 2 and W, is drawn in figure 2. 

For the sake of simplicity we shall only illustrate the approximants indexed by 
even values of k. In these cases, CY is a negative integer whereas p and S are positive. 
The shape of the cases corresponding to odd values of k differ by a global inversion 
(change of sign). 

W, is an  octagon with two edge lengths, Ipi and I C Y I ~  which tends, up  to an  
increasing factor A h ,  to a regular octagon as k increases. For any k the W, vertices 
have integral coordinates. 

Table 1. Coordinates of the vertices of the 4D unit cube y. 

Vertex Coordinates Vertex Coordinates 

0 0 0 0  
1 0 0 0  
0 1 0 0  
0 0 1 0  
0 0 0 1  
1 1 0 0  
1 0 1 0  
1 0 0 1  

9 
I O  
11 
12 
13 
14 
15 
16 

0 1 1 0  
0 1 0 1  
0 0 1 1  
1 1 1 0  
1 0 1 1  
1 1 0 1  
0 1 1 1  
1 1 1 1  

Table 2. Coordinates (in the basis { E ~ ,  c4} of E h )  of the 16 vertices of W, 

Vertex Coordinates Vertex Coordinates 

0 0 

a R 

a - R  

P 0 
0 P 
2a 0 
a + P  - a  
a 8 

9 
10 
1 1  
12 
13 
14 
I5 
16 

R 

a + @  
P 
0 
8 
P 
a + P  
P 
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0 0 0 0 0 0 0  

3 9 
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W,  in €:,: ( a )  with the 16 vertices of y, mapped into €:,; 
of W, with six quadrilaterals (two squares and four 

The octagon is used to select the nodes of the lattice [ E ~ ,  c4] which make, after 
projection, the structural unit (basis) of the approximant. First of all, to avoid 
ambiguities on the boundaries of the selection domains, the octagon should be slightly 
shifted to a generic position (actually the selected set does not depend on the shift 
but through a global translation). Next, to obtain the selected nodes in a compact 
form we can partition the octagon into simpler regions as shown in figure 2 .  These 
regions are the acceptance domains for the six types of tiles appearing in the tiling 
(here, tiles of different orientation are considered as distinct: the square appears in 
two orientations, the rhombus in four (Katz and Duneau 1986)). 

For each quadrilateral i = I ,  11, . . . , VI of W,, the coordinates of the integral points 
in the { E ~ ,  e4} basis are easily obtained in the following form: 

where (Si, T, )  is an affine transform (specified by a 2 x 2 matrix S,  and a translation 
T, )  and the integers ( p ,  q )  run over suitable ‘rectangles’: 

For the square region I we describe two subsets of vertices I and I’ which form a 
centered square lattice parallel to the square edges. 

The unit cell contains Nk =2(l(~l+Ip1)’-lp1~ sites; table 3 gives the matrices S,, 
the vectors T, and the values P,, 9,. 

Finally, as for the Fibonacci chain, we can obtain the approximant vertices mapped 
into E. The coordinates are most conveniently expressed in the basis { e , ,  e,} ,  where 
E, = T ( E , )  for i =  1,. . . , 4  and the projector is given in (13); the basis { e , ,  e z }  is 
orthogonal; the two remaining vectors { e 3 ,  el}  form another basis of the plane related 
to the former by a 45” rotation J :  

1 1  

J = d 1  -3 
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Table 3. Affine transforms and indexation bounds for the six basic regions. 

According to 0 4, the invariance lattice of the approximant is? 

A k . r r ( L o ) = A k [ e , ,  e2]=[Akel,Ake2] (37) 

This is a plain dilated square lattice. 

pattern is given by the union of the six subsets 
Next, we can,compute the Nk vertices contained in a square unit cell. The projected 

A k * ( B k ) = A k  U {n , e3+n ,e , ln , ,  n4 given by (34-35)). (38) 
1 = I , .  . . , V I  

To express it in the coordinates of the lattice (37), use the transition matrix (36) and 
divide by the scaling factor A k :  

then bring the points back into the unit cell. This leads to 

(3 (::) = (::) mod .rr( Lo) = Frac 

in the {A ke,  , A ‘eez} basis. The coordinates X, , X 2  are given in table 4: they depend on 
the index k of the approximant, on the quadrilateral i, and on the variables p ,  q running 
within the limits given in table 3 and (35). The unit cell of the approximants for k = 2 
and k = 4 are shown in figures 3 and 4. 

Table 4. ‘Extended’ coordinates of a basis of the approximant (in units of a) 
i I I ’  I 1  111 IV V VI 

t Remember that [ U ,  U ]  denotes the lattice spanned by U and U. 
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Figure 3. The unit cell of the periodic tiling corresponding to k = 2. 

Figure 4. The unit cell of the periodic tiling corresponding to k = 4. 

To summarise, the successive approximants generated by iterations of the inflation 

(i)  a square lattice of translations (37) scaling as A ~ ,  
(ii) a set of Nk = 0 2 k + l +  0 2 k  vertices within a unit cell whose explicit explicit 

coordinates in the basis of the lattice are given by formula (40) and table 4. 
We end this section by a remark about the cases where, as in this one, both the 

physical E and the complementary space (E’ or EA) have the same dimension (here 

are characterised by 
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p = n - p  = 2) or eventually where dim( E ' )  G dim(E).  Then the procedure leading to 
the structural unit contained in a cell-essentially select and project-may be carried 
out directly in the physical space E after we have mapped, with the projector r, all 
the required 'tools' into E. In the octagonal example (see the summary at the end of 
§ 4) the finite pattern is 

A ki7( Bk ) = A kT(  w k  n Lb) 

= Ak(Rk [ e , ,  e41? (41) 

(42) 

where r ( L ; ) )  is just the lattice [ e , ,  e,] at 45" WRT ( e , ,  e z )  and the selection window 

ak = T( wk) = 7 r r & M - k (  7) 

is an octagon whose coordinates in ( e , ,  e,) are precisely those given in table 2. 

7. Fourier transform 

We give a qualitative account of the intensity spectrum of the approximants. Since 
the coordinates of the lattice and basis have been explicitly given, the computation is 
standard. To be specific, we focus on the octagonal case (for icosahedral symmetries, 
see Verger-Gaugry (1988)). 

From § 2, we see that the point measure associated to the approximant X k  

decomposes into a convolution product corresponding to the translation lattice A 'r( Lo) 
and to the basis or Unit cell A k i 7 ( & ) :  

mxi = ~ A ~ , ( L , , ) * ~ A ~ , ( E , ) .  (44) 

In the octagonal case, the translation lattice is the dilated square lattice (37); the 

The Fourier transforms of the various measures are defined by 
basis is a subset of Nk vertices provided by (41). 

G ( q )  = exp(2irqx)m(dx) q E  R2.  J 
The convolution (44) implies that 

'Xh = h ' V <  L,))' h ' T i  BA 1 

is a point measure with support in the dual lattice A-'[[eT, e : ] :  

(45) 

G A ~ ~ ( L ~ , ) =  A - 2 k m ~ - h ~ [ e : . e r l .  (47) 
The amplitudes are modulated by a structure factor given by the finite sum of plane 
waves 

An evaluation of the Fourier transforms, using (47) and (48), is given in figure 5 for 
k = 2 and 4. 
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Figure 5. The Fourier transforms of the approximants corresponding to ( a )  k = 2 and ( b )  
k = 4 .  

To be complete, we briefly make the connection with the cut and project algorithm 
(see Duneau 1988). First, notice that the amplitude (48) at the origin is proportional 
to card(Bk) = Nk. In the large-k limit, this factor compensates the A - 2 k  factor in (47). 

According to (41) and (42), the pattern T( Bk) may as well be considered as a product 

m7T( Bh ) = mnh m[e3,Ca] (49) 

of the [e3,  e4] lattice by the characteristic function mRA of ak. This means that the 
Fourier amplitude (48) is equivalent t o t  

which is of order 1. Following $0 2-4, it should be clear that wk is the oblique projection, 
with rational kernel EL, of y. Then 

% (x )  = MA huI .  ( X )  = mwh ( A  - k X )  

f i n h ( q )  = h 2 k f i w h ( h k q ) .  ( 5 2 )  
Inserting the above formula into (50) and using (47), we get the following expression 

for the Fourier transform: 

with amplitudes equal to 

a ( n )  = f i w h [ A  k (  n,eT + n2eT - n3ef - n 4 e : ) ] .  (54) 

t The sum and convolution should be understood here as limits N + CO o f  sums or integrals over N x N 
squares. 
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Through the linear isometry er  + el*, e ;  + e;*, the argument on the RHS of (54) 
may be identified to the complementary projection? 

r ' ( n ) = C  n,e*. ( 5 5 )  

To get rid of the A k  factors, change the summation variables in (53) to v = M - k ( n )  
so that (see ( 1  1)) 

~ ' ( v )  = T ' M - ~ ( ~ )  = A k . n ' ( n ) .  (56) 

On the other hand, if p is the projector onto E* with kernel M - ' [ e T ,  e:], we have 

p(~)=pM-~(n)=n,pM-~(~T)+n~pM-~(~$) 

= K k ( n , e T +  n ,e$) .  (57) 

Substitute (56) and (57) into (53) and (54): 

" S Z 4  
& A  = c k A ( T ' ( v ) ) f j p , " , .  (58) 

This is the familar expression of the dual cut method. It allows a straightforward 
comparison of the approximant spectrum with the spectrum of the quasiperiodic 
octagonal tiling. A spot at q = ~ ( n )  undergoes a shift proportional to l q ' l A - 2 k ;  as to 
the corresponding intensity I ( q ) ,  the change is more tedious to evaluate because of 
the degeneracy in the rational projection. If we neglect such a degeneracy (an  approxi- 
mation which is valid as long as there is a node n which is much closer to q than all 
the others in p - ' ( q ) ) ,  the relative change is of the order of 

where 2 R  is the diameter of the window approximated by a disc. 

8. Conclusion 

We may say a word as to the general problem of approximating irrational p-planes 
by rational ones in R". First, when the dimension n is larger than 2 ,  there is no natural 
ordering of the various approximants (the p-planes form a p (  n -p)-dimensional 
manifold) so we lack general criteria to single out the best approximants-as the 
so-called convergents in ID.  Secondly, there is no systematic algorithm, like the 
continued fraction expansion in I D ,  providing exponentially fast converging sequences. 
Because of the relative 'scarcity' of 2" in R", there seem to exist, e.g., p-planes in RZp,  
p 2 2 ,  which cannot be reached by iteration of a universal algebraic procedure. 

However, nothing prevents us devising such an  algorithm-and building the related 
sequence-for a suitable class of irrational subspaces: this is what we have done for 
the class of self-similar tilings. Tilings of this class are characterised by suitable 
algebraic numbers and are therefore far from generic. However, all the quasicrystals 
observed so far fall in this class. 

f Whether we choose H '  or I - p  does not really matter since both have kernel E * ;  the map ( I  - p ) i E , :  E'+  E ;  
( p  defined right before (57) )  is a dilation (it commutes with the fourfold rotations). 
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Besides modelling the large cell structures observed in some ternary alloys, the 
approximants also underlie theoretical investigations: the exact coincidence of the 
approximants with the quasiperiodic tiling on larger and larger cells allows studies or 
simulations of finite samples of the quasicrystal endowed with ‘periodic boundary 
conditions’ (for wave equations, statistical mechanical models, relaxations, etc . . .). 
Techniques based e.g. on the renormalisation group may then be used to control the 
limit to the true quasicrystal. 

Appendix 

This appendix specifies some properties of the windows associated with the n-  
dimensional unit cube; the notation is the same as in Fig 2-4. 

Dejinition. Let a , ,  . . . , a ,  denote n vectors in a vector space. The (open) zonohedron 
W generated by a , ,  . . . , a, is the polyhedron 

Lemma. The subset W, = T;( yk) is the zonohedron spanned by the following n 
generators: 

a i k ’ =  T b [ M - k ( E , ) ]  

The following recursion formula holds: 

where { E ] ,  . . . , E , }  is the standard basis of R“.  

Proof. Clearly Yk = iWk( y )  is the fundamental cell of 2“ spanned by the n generators 
A K k ( & , ) ;  thus 

n 

M-k( . , )  = c (M-h), , ,&, 
, = I  

and 

By projection on EA we obtain 
n 

/ = 1  
a:k) = (M-k) j , i a :O’  where a!” = T & ( E , )  

or 

and 
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Remark. Since M belongs to the group G L ( n ,  Z ) ,  M-’ is a matrix with integer entries; 
the above formula shows that the generators a\k)  of W, are integer combinations of 
those of Wk-1. This property ensures a simple relation between the successive wk. 
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